$$
(\vec{a} \times \vec{b}) \times \vec{c}=(\vec{c} \cdot \vec{a}) \vec{b}-(\vec{c}, \vec{b})(\vec{a})
$$

Given $(\vec{a} \times \vec{b}) \times \vec{c}=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a} \longleftarrow$ Equating
\leftarrow Correct answer

$$
(\vec{c} \cdot \vec{a}) \vec{b}-(\vec{c} \cdot \vec{b})(\vec{a})=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a}
$$

Since $\vec{a} \& \vec{b}$ are not collinear, we cancurete

$$
\begin{array}{ll}
& -(\vec{c} \cdot \vec{b})(\vec{a})=\frac{1}{3}|\vec{b}||\vec{c}| \vec{a} \\
\Rightarrow & -(\vec{c} \cdot \vec{b})=\frac{1}{3}|\vec{b}||\vec{c}|
\end{array}
$$

$\Rightarrow \cos \theta=\frac{1}{3}$ where θ is the angle between $\vec{b} \& \vec{c}$

$$
\therefore \sin \theta=\sqrt{1-\cos ^{2} \theta}= \pm \frac{2 \sqrt{2}}{3}
$$

Option (3) is the cor rect answer.

