Let O be the vertex and Q be any point on the parabola, $x^{2}=8 y$. If the point P divides the line segment $O Q$ internally in the ratio $1: 3$, then the locus of P is :
(1) $y^{2}=2 x$
(2) $x^{2}=2 y$
(3) $x^{2}=y$
(4) $y^{2}=x$

$$
\text { Given: } O P: P Q:: 1: 3 \quad ; \operatorname{Let} P(h, k)
$$

$$
\therefore h=\frac{4 t}{4} \Rightarrow h=t
$$

$$
\& k=\frac{2 t^{2}}{4} \Rightarrow R=\frac{t^{2}}{2}
$$

$$
\therefore \quad 2 k=h^{2} \Rightarrow x^{2}=2 y
$$

$$
\therefore \text { Correct option is (2) }
$$

