$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x} \text { is equal to } \\
& \operatorname{Lt}_{x \rightarrow 0} \frac{(1-\cos 2 x)(3+\cos x)}{x \tan 4 x} \\
& \cos 2 x=\cos ^{2} x-\sin ^{2} x \\
& \tan 4 x=4 \tan x \\
& \left(1-\tan ^{2} x\right)\left(1-\tan ^{2} 2 x\right) \\
& \therefore \operatorname{Lt}_{x \rightarrow 0} \frac{2 \sin ^{2} x(3+\cos x)}{(4 x \tan x) /\left(1-\tan ^{2} x\right)\left(1-\tan ^{2} x\right)} \\
& \Rightarrow \frac{1}{2} \operatorname{Lt}_{x \rightarrow 0}\left(\frac{\sin x}{x}\right)(3+\cos x)\left(1-\tan ^{2} x\right)\left(1-\tan ^{2} 2 x\right)(\cos x) \\
& \Rightarrow \frac{1}{2} \times 1 \times{ }^{4} \times 1 \times 1 \times 1=2 \\
& \text { Co rect option is (1) }
\end{aligned}
$$

