point of intersection of the line
$\frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}$ and the plane
$x-y+z=16$, is :
(1) $3 \sqrt{21}$
(2) 13
(3) $2 \sqrt{14}$
(3) $2 \sqrt{14}$

$$
\begin{aligned}
& \frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{12}=t \\
\Rightarrow & x=3 t+2 ; y=4 t-1 ; z=12 t+2
\end{aligned}
$$

This will satisfy the plane

$$
\begin{gathered}
x-y+z=16 \\
\therefore 3 t+2-4 t+1+12 t+2=16 \\
\Rightarrow t=1
\end{gathered}
$$

$\therefore$ The point of intersection is $(5,3,14)$
$\therefore$ Distance of this point from $(1,0,2)$ is

$$
=\sqrt{(5-1)^{2}+(3-0)^{2}+(14-2)^{2}}=13
$$

Correct option is (2)

