Sunday, April 5, 2015 9:21 AM

The sum of first 9 terms of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots$. is :

$$
\begin{aligned}
& n^{\text {th }} \text { term }=t_{n}=\frac{1^{3}+2^{3}+\cdots+n^{3}}{1+3+5+\cdots+(2 n-1)} \\
& t_{n}=\left\{\frac{n(n+1)}{2}\right\}^{2} \times \frac{1}{n^{2}}=\frac{(n+1)^{2}}{4}
\end{aligned}
$$

$$
\begin{aligned}
\therefore t_{n} & =\frac{n^{2}+2 n+1}{4} \\
\therefore S_{n} & =\frac{1}{4}\left\{\sum\left(n^{2}\right)+2 \sum n+\sum(1)\right\} \\
& =\frac{1}{4}\left\{\frac{n(n+1)(2 n+1)}{6}+\frac{2 n(n+1)}{2}+n\right\} \\
\therefore S_{9} & =\frac{1}{4}\left\{\frac{9 \times 10 \times 19}{6}+9 \times 10+9\right\}=96
\end{aligned}
$$

\therefore Correct option is (4)

