A complex number z is said to b unimodular if $|z|=1$. Suppose z_{1} and z_{2} are complex numbers such that $\frac{z_{1}-2 z_{2}}{2-z_{1} \bar{z}_{2}}$ is unimodular and z_{2} is not
Then the point z_{1} lies on a : circle of radius 2 .
(2) circle of radius $\sqrt{2}$.
(3) straight line parallel to x-axis.

$$
\left|\frac{z_{1}-2 z_{2}}{2-z_{1} \bar{z}_{2}}\right|=1
$$

$$
\begin{aligned}
& \Rightarrow\left(\frac{z_{1}-2 z_{2}}{2-z_{1} \bar{z}_{2}}\right)^{2}=1 \\
& \Rightarrow\left(\frac{z_{1}-2 z_{2}}{2-z_{1} \bar{z}_{2}}\right)\left(\frac{\overline{z_{1}-2 z_{2}}}{\overline{2-z_{1} \bar{z}_{2}}}\right)=1 \\
& \Rightarrow\left(\frac{z_{1}-2 z_{2}}{2-z_{1} \bar{z}_{2}}\right)\left(\frac{\overline{z_{1}}-2 \bar{z}_{2}}{2-\bar{z}_{1} z_{2}}\right)=1 \\
& \Rightarrow\left\{\left|z_{1}\right|^{2}-u_{1}\right\}\left\{1-\left|z_{2}\right|^{2}\right\}=0
\end{aligned}
$$

Since $\left|z_{2}\right| \neq 1$

$$
\Rightarrow \quad\left|z_{1}\right|=2
$$

Circle with center $(0,0)$ and radius 2
\therefore Correct option is (1)

