$$
m=\frac{l+n}{2}
$$

$l, G_{1}, G_{2}, G_{3}, n$ are in G_{T}, P

$$
\begin{align*}
& \therefore G_{1}{ }^{2}=l G_{2} ; C_{T_{2}}{ }^{2}=C_{1} G_{3} ; G_{T_{3}}{ }^{2}=n G_{2} \\
& G_{1}^{4}+2 G_{2}^{4}+G_{3}^{4}=l^{2} G_{2}^{2}+2 G_{1}^{2} G_{3}^{2}+n^{2} G_{2}^{2} \\
& =G_{2}^{2}\left(l^{2}+2 n l+n^{2}\right) \\
& =G_{2}^{2}(2 m)^{2}=4 m^{2} G_{2}^{2} \tag{3}
\end{align*}
$$

We know that $G_{2}{ }^{2}=G_{1} G_{3}=\sqrt{n \ell} G_{2}$

$$
\Rightarrow \quad G_{2}=\sqrt{n l}
$$

\therefore Equation (3) becomes

$$
G_{1}^{4}+2 G_{2}^{4}+G_{3}^{4}=4 m^{2} n \ell
$$

\therefore Correct option is (4)

