$$
\begin{gathered}
\int \frac{d x}{x^{2}\left(x^{4}+1\right)^{3 / 4}}=\int x^{-2}\left(x^{4}+1\right)^{-3 / 4} d x \\
-\frac{2+1}{4}-\frac{3}{4} \text { is equal to-1 }
\end{gathered}
$$

which is an integer.

$$
\begin{aligned}
& \therefore x^{4}+1=x^{4} t^{4} \frac{\text { Substitutiing }}{x t^{3}} d t \\
& \Rightarrow d x=\frac{x-t^{4}}{1-} d t \\
& \therefore I=\int\left\{\frac{1}{x^{2}} \times\left(x^{4} t^{4}\right)^{-3 / 4} \times \frac{x t^{3}}{1-t^{4}}\right\} d t \\
& \therefore I\left.=\int \frac{d t}{x^{4}\left(1-t^{4}\right)}=\int(-1) d t+\frac{x^{4}+1}{x^{4}}\right)^{1 / 4}+c
\end{aligned}
$$

Correct of tion is (2)

