The normal to the curve, $x^{2}+2 x y-3 y^{2}=0$, at $(1,1)$:
(1) meets the curve again in the third quadrant.
meets the curve again in the fourth quadrant.
(3) does not meet the curve again.
meets the curve again in the second quadrant.

$$
x^{2}+2 x y-3 y^{2}=0
$$

Differentiating w.r.t x, we get

$$
\begin{array}{r}
y^{\prime}=\frac{x+y}{3 y-x}=\begin{array}{r}
\text { slope of the } \\
\operatorname{tangent}
\end{array}
\end{array}
$$

\therefore Slope of the normal $=\frac{x-3 y}{x+y}$
\therefore slope of the normal at $(1,1)$

$$
=-1
$$

\therefore Equation of the normal with
slope -1 and passing through
the point (1,1) is $\equiv y=-x+2$
This norm al intersects the curve

$$
x^{2}+2 x y-3 y^{2}=0 \text { again }
$$

at $(3,-1)$ which lies in the $4^{t h}$ quadrant
\therefore The correct option is (2)

