Since $g(x)$ is differentiable, at implies that $g(x)$ is continuous in the given interval

$$
g^{\prime}(x)=\left\{\begin{array}{cl}
\frac{k}{2 \sqrt{x+1}} & 0 \leqslant x \leqslant 3 \\
m & 3<x \leq 5
\end{array} \quad \begin{array}{c}
\frac{k}{2 \sqrt{4}}=m \Rightarrow k=4 m
\end{array}\right.
$$

Since $g(x)$ is continuous at $x=3$

$$
k \sqrt{4}=3 m+2 \Rightarrow 2 k=3 m+2
$$

Using these equations we get $m=\frac{2}{5} ; k=\frac{8}{5}$

$$
\therefore m+k=2
$$

\therefore Correct option is (3)

