```
If \(\lim _{x \rightarrow 0}\left[1+\frac{f(x)}{x^{2}}\right]=3\), then \(f(2)\) is equal
\(\underbrace{\text { to }}{ }^{\text {t. }} 0\)
(2) 4
\(\begin{array}{ll}\text { (3) } & -8 \\ \text { (4) } & -4\end{array}\)
```

$$
f(x)=A x^{4}+B x^{3}+C x^{2}+D x+E
$$

$$
\therefore f^{\prime}(x)=4 A x^{3}+3 B x^{2}+2 C x+D
$$

Given $f^{\prime}(1)=f^{\prime}(2)=0$

$$
\begin{aligned}
\therefore & 4 A+3 B+2 C+D=0 \ldots .(\text { (i) } \\
& 32 A+12 B+4 C+D=0 \ldots \text { (ii) } \\
& \operatorname{Lt}_{x \rightarrow 0}\left[1+\frac{A x^{4}+B x^{3}+C x^{2}+D x+E}{x^{2}}\right]=3 \\
\Rightarrow & \operatorname{Ltt}_{x \rightarrow 0}\left(1+A x^{2}+B x+C+\frac{D}{x}+\frac{E}{x^{2}}\right)=3
\end{aligned}
$$

For the limit to
Replacing
$\Rightarrow 1+C=3 \Rightarrow C=2 \quad \int \begin{aligned} & \text { in }(i) \&(i i) \\ & \text { we get }\end{aligned}$

$$
\begin{gathered}
4 A+3 B=-4 \\
32 A+12 B=-8 \\
\text { Solving } \rightarrow A=\frac{1}{2} ; B=-2
\end{gathered}
$$

\therefore The polynomial is

$$
\begin{aligned}
& f(x)=\frac{x^{4}}{2}-2 x^{3}+2 x^{2} \\
& \therefore f(2)=8-16+8=0
\end{aligned}
$$

Correct option is (1)

