

A train is moving on a straight track with speed 20 ms⁻¹. It is blowing its whistle at the frequency of 1000 Hz. The percentage change in the frequency heard by a person standing near the track as the train passes him is (speed of sound = 320 ms⁻¹) close

to:

Apparent framing when havin is approaching the person:

$$f_1 = \frac{c}{c - v_s} f_0$$

bon havi is morning away -

$$f_2 = \frac{c}{c + v_s} f_o$$

Af as train passes to proon = fi-fz

$$\Delta f = f \circ \left(\frac{c}{c - v_s} - \frac{e}{c + v_s} \right) = \frac{2cv_s}{c^2 - v^2} f \circ$$

Vs = 20 m/s, c = 320 m/s, fo= 1000 Hz

$$\sqrt{s} = \frac{20}{\text{Mps}}$$
 in figure = $\frac{Af}{f_s} \times 100$
 $= \frac{20/v_s f_0}{c^2 - v^2} \times \frac{c - v_s}{f_0} \times 100$
 $= \frac{20/v_s f_0}{c^2 - v^2} \times \frac{c - v_s}{f_0} \times 100$