

Two long current carrying thin wires, both with current I, are held by insulating threads of length L and are in equilibrium as shown in the figure, with threads making an angle $'\theta'$ with the vertical. If wires have mass λ per unit length then the value of I is:

 $(g = gravitational\ acceleration)$

(1)
$$2\sqrt{\frac{\pi gL}{\mu_0}}\tan\theta$$

(2)
$$\sqrt{\frac{\pi \lambda g L}{\mu_0}} \tan \theta$$

(3)
$$\sin\theta \sqrt{\frac{\pi \lambda g L}{\mu_0 \cos\theta}}$$

(4)
$$2\sin\theta \sqrt{\frac{\pi\lambda gL}{\mu_0\cos\theta}}$$
 \triangle Correlation

$$\frac{F}{mg} = ton0$$

$$\frac{F}{mg} =$$

$$= \sum_{k=1}^{\infty} \frac{1}{2} \sum_{k=1}^{\infty} \frac{1}{k} \sum_$$